1. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$ then the equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is (2002)

1)
$$3x^2 - 19x + 3 = 0$$

2) $3x^2 + 19x - 3 = 0$
3) $3x^2 - 19x - 3 = 0$
4) $x^2 - 5x + 3 = 0$

2)
$$3x^2 + 19x - 3 = 0$$

3)
$$3x^2 - 19x - 3 = 0$$

4)
$$x^2 - 5x + 3 = 0$$

Ans.

(1) We have $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$; $\Rightarrow \alpha \& \beta$ are roots of equation, $x^2 = 5x - 3$ or $x^2-5x+3=0$

$$\therefore \alpha + \beta = 5$$
 and $\alpha\beta = 3$

Thus, the equation having $\frac{\alpha}{\beta} & \frac{\beta}{\alpha}$ as its roots

is
$$x^2 - x \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) + \frac{\alpha\beta}{\alpha\beta} = 0$$

$$\Rightarrow x^2 - x \left(\frac{\alpha^2 + \beta^2}{\alpha \beta} \right) + 1 = 0 \text{ OR } 3x^2 - 19x + 3 = 0$$